Modelling in Mechanics ### Constructing a model Mechanics deals with motion and action of forces on objects. Mathematical models can be constructed to simulate real-life situations, but in many cases it is necessary to simplify the problem by making assumptions so that it can be described using equations or graphs in order to solve it. Example 1: The motion of a basketball as it leaves a player's hand and passes through the net can be modelled using the equation h = 2 + 1.1x - $0.1x^2$, where h m is the height of the basketball above the ground and x m is the horizontal distance travelled. - a. Find the height of the basketball: - When it is released $$x = 0$$; $h = 2 + 0 + 0$ Height = 2m At a horizontal distance of 0.5m $$x = 0.5$$; $h = 2 + 1.1 \times 0.5 - 0.1 \times (0.5)^2$ Height = 2.525 m b. Use the model to predict the height of the basketball when it is at a horizontal distance of 15m from the player. $$x = 15$$; $h = 2 + 1.1 \times 15 - 0.1 \times (15)^2$ Height = -4 m c. Comment on the validity of this prediction. Height cannot be negative so the model is not valid when x = 15 m. #### **Modelling assumptions** Modelling assumptions can simplify a problem and allow you to analyse the reallife situation using known mathematical techniques. These assumptions will affect the calculations in a particular problem. Some common models and modelling assumptions | Model | Modelling assumptions | | |--|--|--| | Smooth surface | Assume there is no friction between | | | | the surface and any object on it | | | Rough surface | Objects in contact with the surface | | | | experience a frictional force if they | | | | are moving or are acted on by a force | | | Air resistance – Resistance | Usually modelled as being negligible | | | experienced as an object moves | | | | through the air | | | | Gravity – Force of attraction between | Assume that all objects with | | | all objects. Acceleration dur to gravity | mass are attracted towards | | | is denoted by g, where the value of g= | the Earth | | | 9.8 ms ⁻² | Earth's gravity is uniform and | | | | acts vertically downwards | | | | g is constant and is taken as | | | | 9.8 ms ⁻² , unless otherwise | | | | stated in the question | | #### Quantities and units The International System of Units, (abbreviated as SI) is the modern form of the metric These base SI units are most commonly used in mechanics. | Quantity | Unit | Symbol | |---------------------|----------|--------| | Mass | Kilogram | kg | | Length/displacement | Metre | m | | Time | Seconds | S | These **derived** units are compound units built from the base units. | Quantity | Unit | Symbol | |----------------|------------------------------|----------------------------| | Speed/velocity | Metres per second | ms ⁻¹ | | Acceleration | Metres per second per second | ms ⁻² | | Weight/force | Newton | N (= kg ms ⁻²) | Some of the common force diagrams that you will encounter in mechanics : ## Meanings of each of the above forces: - The weight (or gravitational force) of an object acts vertically downwards - The **normal reaction** is the force acting perpendicular to a surface when an object is in contact with the surface. - The **friction** is a force which opposes the motion between two rough surfaces - Buoyancy is the upward force on a body that allows it to float or rise when submerged in a liquid. - Air resistance opposes motion of an object falling towards the ground. # **Edexcel Stats/Mech Year 1** Example 2: Write the following quantities in SI units. a. $$4km$$ $4 km = 4 \times 1000 = 4000 m$ b. $$0.32 \text{ grams}$$ $0.32 \text{ g} = 0.32 \div 1000 = 3.2 \times 10^{-4} \text{ kg}$ c. $$5.1 \times 10^6 \text{ km h}^{-1}$$ $5.1 \times 10^6 \text{ km h}^{-1} = 5.1 \times 10^6 \times 1000$ $= 5.1 \times 10^9 \text{ m h}^{-1}$ $5.1 \times 10^9 \div (60 \times 60) = 1.42 \times 10^6 \text{ m s}^{-1}$ #### Working with vectors Vector quantities are quantities which have both magnitude and direction. Vector quantities can be positive or negative. Examples are: | Quantity | Description | Unit | |--------------|------------------------------------|---------------------------------------| | Displacement | Distance in a particular direction | Metre (m) | | Velocity | Rate of change of displacement | Metres per second (ms ⁻¹) | | Acceleration | Rate of change of velocity | Metres per second per | | | | second (ms ⁻²) | Scalar quantities are quantities which have magnitude only. Scalar quantities are always positive. Examples are: | Quantity | Description | Unit | |----------|--|---------------------------------------| | Distance | Measure of length | Metre (m) | | Speed | Measure of how quickly a body moves | Metres per second (ms ⁻¹) | | Time | Measure of ongoing events taking place | Second (s) | | Mass | Measure of the quantity of matter contained in an object | Kilogram (kg) | You can also describe vectors using i-j notation, where i and j are the unit vectors in the positive x and y directions. Example 3: The velocity of a particle is given by $v = 3i + 5j \text{ ms}^{-1}$. Find: a. The speed of the particle |speed| = $$|v| = \sqrt{3^2 + 5^2} = \sqrt{34}$$ = 5.83 ms⁻¹ b. The angle the direction of motion of the particle makes with the unit vector i Angle made with $$i = \theta$$ $\tan \theta = \frac{5}{2} so \theta = 59^{\circ}$